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Abstract—The field prediction of an unknown electromagnetic
interference (EMI) source within a complex electromagnetic envi-
ronment requires complex radiation field formulas. In this article,
we propose an artificial neural network (ANN) method to predict
the field by using the scanned phaseless near-field from the EMI
source. The near-field magnitude is scanned using a near-field
probe first. After that, an ANN is trained to present the mapping
between the observation point and the radiation field. A set of
free-space Green’s functions are used as the input of the ANN,
and the magnitude of the radiation field is taken as the output
of the ANN. With the help of Green’s function, the trained ANN
can accurately predict the radiation field outside the scanning
regions. The feasibility of this method is verified using numerical
and measurement experiments. The proposed method can realize
source reconstruction in a complex electromagnetic environment.

Index Terms—Artificial neural network (ANN), electromagnetic
interference (EMI), field prediction, interpolation method.

I. INTRODUCTION

W ITH the miniaturization and complication of modern
electronic devices, increased working frequency makes

electromagnetic interference (EMI) problems more serious [1].
When the internal structure and materials of the devices under
test (DUT) are known, full-wave simulation software can be
used to simulate and analyze such EMI problems. However,
for DUTs in a complex working environment, it is extremely
difficult and time consuming to use the full-wave simulation
software to model and analyze EMI problems.

The near-field scanning method can capture the radiation
features of a real EMI source, which can be helpful to re-
construct an equivalent source to predict the radiation from
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the real source. According to the principle of equivalence,
equivalent magnetic/electric currents can replace the radiating
source, where the near-field to near/far-field transformation is
accomplished [2]. For the practical EMI source reconstruction,
an electric/magnetic dipole array, instead of continuous mag-
netic/electric currents, is used as the equivalent source. Once
the equivalent dipole array is determined, the near-field in other
regions can be calculated.

Many methods for reconstructing the equivalent dipole array
have been proposed, such as the iteration method [3], the genetic
algorithm [4], the differential evolution (DE) method [5], and
the dipole extraction from magnitude-only electromagnetic-field
data based on genetic algorithm and back-and-forth iteration al-
gorithm [6]. However, not all radiation sources can be accurately
reconstructed using the aforementioned methods. Most of the
available methods assume that the equivalent dipole array is in
the free space or above an infinite ground plane. It is not true for a
complex EMI environment, where multireflections and diffrac-
tions may exist. Therefore, it is crucial to find a new mapping
function between the near-field and the equivalent source.

As a new method, artificial neural network (ANN) shows its
potential benefit in the electromagnetic modeling and design,
including the inverse modeling and application to microwave
filters [7], predicting eye diagram [8], combining with the finite
difference time-domain method [9] or the method of moments
[10]. It is also used to reconstruct the equivalent dipole of a
real EMI source in [11] and [12]. Recently, the powerful self-
learning and nonlinear mapping capabilities of ANN are used for
radiation source reconstruction in complex environments [13].
However, it requires an accurately measured phase of the near-
field and the problem under study is linear. The accurate near-
field phase may not be available due to environmental noise.

In this article, the ANN for solving such a problem is pro-
posed. Compared with [13], the process of measuring the phase
is eliminated, and the solution of linear equations is trans-
formed into the solution of nonlinear equations. For this pur-
pose, Bayesian regularization is added to improve the nonlinear
ability. At the same time, the ANN algorithm is rearranged and
presented as “finding the expression of the unknown function
f” in Section IIA of this article, instead of the “matrix-vector
multiplication” in Section II of the article [13].

The rest of this article is organized as follows. In Section II, we
propose an ANN structure based on magnitude-only near-field
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Fig. 1. EMI source in a complex environment and its equivalent dipole array.

radiation. In Section III, we describe the effectiveness of the
proposed method with several numerical examples. Further-
more, the proposed method is demonstrated by using a fabricated
antenna placed between two parallel metal plates in Section IV.
Finally, Section V gives the conclusion of this article.

II. PROPOSED ANN STRUCTURE

A. Green’s Functions Used as ANN Inputs

According to the field equivalence principle, an equivalent
dipole array can replace the real and complex EMI radiation
source (the DUT), as shown in Fig. 1. In this way, the complex
radiation problem can be simplified. In printed circuit board
applications, the magnetic field can be more accurately measured
than the electric field. Therefore, the scanned magnetic near-field
magnitude is usually used to reconstruct the equivalent magnetic
dipole array. In Fig. 1, the magnetic near-field distribution of the
DUT is scanned by using a magnetic probe, and it is further used
to solve the equivalent dipole array inversely. The position and
the number of dipoles are all predetermined according to DUT
and the scanned field pattern. The unknowns are the moments
of every dipole in the array.

In a spherical coordinate system, the free-space Green’s func-
tion is used to describe the relationship between a z-polarized
magnetic dipole located at the origin and its magnetic near-field
as
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where M is the dipole moment. The distance between the dipole
and the observation point is R, and η and k0 are the free-space
impedance and wavenumber, respectively.

The tangential magnetic near-field on a scanning plane can
be expressed as the field summation from all equivalent dipoles
(including their images if there is a ground plane) as

H (ri) =
N∑

j=1

G
(
ri, r

′
j

) ·M (
r′j
)

(2)

where H(ri) = [Hx(ri), Hy(ri)]
t is the scanned tangential

magnetic field at the scanning/observation point ri on the scan-
ning plane. i = 1, …,M and M is the number of scanning points.
M(r′j) = [Mx(r

′
j),My(r

′
j)]

t is the moment of dipole located

at r′j , and G(ri, r
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j) =
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Green’s functions obtained from (1). r′j (j = 1, …,N and N is the
number of equivalent dipoles) is named as the source location,
which is predetermined according to DUT and the scanned field
pattern.

Traditionally, (2) is reduced to a set of linear equations, and
then M(r′j) is obtained from the scanned H(ri). Now let us
consider (2) in another way, i.e., H(ri) is taken as an unknown
function of G(ri, r

′
j) as
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The total number of Green’s functions in (3) is 4N. As long
as the source locations r′j (j = 1, . . . , N) are given, the values
of Gxx(ri, r

′
j), Gxy(ri, r

′
j), Gyx(ri, r

′
j), and Gyy(ri, r

′
j) in

(3) only change with the observation point ri. Gxx(ri, r
′
j),

Gxy(ri, r
′
j), Gyx(ri, r

′
j), and Gyy(ri, r

′
j) are taken as the

independent variables of f in (3), while the expression of f is
decided by the dipoles moments M(r′j). For a given set of scanned
field H(ri) (i = 1, …, M), now the problem to be solved is
changed from finding the equivalent dipole moments to finding
the expression of the unknown function f.

The advantage of (3) over (2) is that it can be applied for
a more general case. For a complex environment, the ana-
lytic formula of Green’s function is not available or is very
time consuming to be calculated. The results in (2) are not
accurate for a source in such an environment. However, for
most cases, the complex environment Green’s function can be
numerically calculated by using the free-space Green’s functions
[Gxx(ri, r

′
j), Gxy(ri, r

′
j), Gyx(ri, r

′
j), and Gyy(ri, r

′
j)]. For

example, Green’s function of a rectangular cavity can be ex-
pressed as the summation of the free-space Green’s functions
by using the image theory. In this case, the radiated magnetic
field still can be written in the form of (3) but with a different
unknown function f. Due to the powerful self-learning and
nonlinear mapping capabilities of the ANN, we can train an
ANN to present f, so that it can partially consider the imaging
effect.

Usually, we only have the magnitude of the radiated magnetic
field for most EMI problems. From (3), we can rewrite unknown
scalar functions as
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Fig. 2. Neural network fx for |Hx| prediction.

In the above-mentioned formula, N is the number of source
locations. |Hx| and |Hy| are the magnitudes of the tangential
magnetic near-fields on the scanning/observation points. Equa-
tion (4) is a nonlinear function. In the following section, we train
an ANN to find the expression of fx and fy , then we can predict
the radiated magnetic field at any observation point.

B. ANN Training

We construct two ANNs (fx and fy) to predict |Hx| and |Hy|
in (4), respectively. Their structures and training are similar to
each other. In the following, we only take fx as an example. As
shown in Fig. 2, the neural network is composed of an input
layer, s-hidden layers, and an output layer.

The ANN input is
[
xi1, xi2, . . . , xi2N

]

=

[
Gxx (ri, r

′
1) , Gxx (ri, r

′
2) , . . . , Gxx (ri, r

′
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Gxy (ri, r
′
1) , Gxy (ri, r

′
2) , . . . , Gxy (ri, r

′
N )

]

(5)

where r′1–r′N are predefined. The ANN output is the predicted
|Hx(ri)| at any observation point ri.

In the proposed ANN, we take the set of Green’s functions
in (5) instead of the direct scanning/observation point ri as the
ANN input. The benefit is that since Green’s functions include
the electromagnetic radiation formula, they can improve the
efficiency of ANN training.

In the ANN of Fig. 2, s denotes the number of hidden layers of
the ANN, and m, n, …,l are the numbers of neurons in different
hidden layers. wαβγ is the weight, where subscripts α, β, and
γ are the connected hidden layer number, neurons number of the
α-layer, and neurons number of the (α-1) layer, respectively. bαβ
is the bias, where subscriptsα and β are the hidden layer number
and neurons number of the α-layer, respectively.
Σ|F is the activation function. Due to the existence of the

activation function, the nonlinear mapping ability of the ANNs fx
and fy is increased. We choose tanh(x) as the activation function
in the following equation. Since the neural network based on
Matlab code can only calculate the real number, G(ri, r

′
j) in

(4) is divided into real and imaginary parts

tanh (x) =
ex − e−x

ex + e−x
. (6)

The selection of hidden layers and neurons directly deter-
mines the quality of the network. If there are too few neurons,
fx and fy cannot have good learning and information processing
capabilities. Too many neurons increase the computation time
and increase the risk of overfitting. Therefore, the number of
neurons is generally determined by empirical values. So we
usually choose three or four hidden layers.

A complex neural network is prone to be overfitting, resulting
in poor performance on test sets. Dropout and regularization are
commonly used methods to reduce overfitting. For our applica-
tions, due to the scanning time limitation, the number of scanned
field points is limited. Therefore, different from [13], we use
the Bayesian regularization [14] to reduce the overfitting. The
regularization preserves all the features of the neural network,
reduces the magnitude of the parameters wαβγ , and makes sure
that the scanned near-field pattern contributes to the predicted
field.

The update of parameters wαβγ and bαβ is determined by the
backpropagation algorithm of the neural network. During the
backpropagation, the cost function is defined as [14]

J (wαβγ , bαβ) =
1

M

M∑

i=1

[|H ′
x (ri, wαβγ , bαβ)| − |Hx (ri)|]2

+ λρ (wαβγ) (7)

where |H ′
x(ri, wαβγ , bαβ)| is the ANN predicted magnitude of

the magnetic field and |Hx(ri)| is the scanned value. ρ(wαβγ) is
the regularization term.λ (λ>0) is the regularization coefficient,
which determines the balance between |H ′

x(ri, wαβγ , bαβ)| and
|Hx(ri)|.

During every training iteration, wαβγ and bαβ in (7) are
adjusted in order to minimize J(wαβγ, bαβ). The smaller the
J(wαβγ, bαβ), the more accurate the trained fx and fy. We use
70% of the scanned field as a training set and 30% as a test set.
During the ANN training, the test set continuously calculates the
mean square error with the predicted value of the training set.
When the error value is less than 1%, we stop the training. There-
fore, M in (7) is the total number of scanning points multiplied by
0.7. The process of forward propagation of the neural network
obtains the predicted |H ′

x(ri, wαβγ , bαβ)|, which in turn gets
J(wαβγ, bαβ). After that, the backpropagation process is used,
which is based on the gradient descent method. The gradient
descent method enables the ANN to find the optimal solution
faster while implementing the weight and bias update.

III. NUMERICAL EXAMPLE

In this section, the accuracy of the proposed method is verified
by several numerical examples. We use magnetic dipole to
represent the EMI radiation source and two metal planes to
represent the multireflections environment. In all examples, the
ANN training is completed within half an hour.

A. Two Finite Square Metal Planes

The first simulation model is shown in Fig. 3. Two finite square
metal planes, each having a side length of 400 mm, are located
at z = 0 and z = 100 mm, respectively. The testing frequency
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Fig. 3. Magnetic dipole between two finite square metal planes.

Fig. 4. Top view of two scanning planes.

is 1 GHz. The EMI source is an x-directional dipole located at
(0, 0, and 50 mm). The origin is at the center of the lower metal
plane.

The source locations r′j in (2) are defined on an 8 mm× 8 mm
plane, which is 1 mm above the dipole and with the z-axis as its
center. Five points of r′j are equally predefined along the x and
y directions, respectively, as shown in Fig. 3.

We train the ANN by using the magnetic field magnitude
simulated by using the full-wave software on two scanning
planes. The heights of the two scanning planes are z = 65 mm
and z = 80 mm, respectively, and with the z-axis as their centers.
Near-field magnitude is scanned every 2 mm in the x and y
directions. Here, we define the scanning plane with a height of
z = 80 mm as the upper scanning plane and the scanning plane
with a height of z = 65 mm as the lower scanning plane.

The lower scanning plane is kept as 400 × 400 mm. In order
to verify the robustness of the proposed ANN method, the upper
scanning plane is smaller than the lower plane, as shown in
Fig. 4. The side length of the upper scanning plane is 400 ×
δ mm, with δ ≤ 100%. When δ = 100%, the upper and lower
scanning planes have the same size. In some real applications,
in order to reduce the scanning time, some parts of the scanning
data may be lost. The “δ” is used to demonstrate the advantage
of the proposed ANN method over the traditional interpolation
method for the lost “δ” part.

We compare the proposed ANN method with the method
of cubic spline interpolation. For two methods, the magnetic

TABLE I
ERRORS OF PREDICTED FIELD BY USING TWO METHODS WHEN δ = 100%

Fig. 5. (a) Hx and (b) Hy at (x = −2 mm, y = −20 mm) change with the
z-axis for direct simulation, ANN, and interpolation methods.

field magnitude on two scanning planes is trained or interpo-
lated/extrapolated to predict the magnetic field magnitude on
another validation plane, as shown in Fig. 3.

Table I illustrates the errors of predicted fields by using two
methods when δ= 100%, where we take the full-wave simulated
magnetic fields on the validation plane as the reference. The
rows in red bold represent the predicted field errors on the two
scanning planes. It can be seen from Table I that when ANN is
used to predict |Hx|, |Hy|, and |H|, the error is much smaller
than that of the interpolation method, especially for the fields
on validation planes above or below two scanning planes. The
error is defined as (8) shown at the bottom of this page, where
subscripts cal and ref represent the predicted and reference fields,
respectively.

The following Fig. 5(a) and (b) plots the field distribution
along the z-axis for three methods. The field decreasing ratio
from lower to upper scanning planes is complex since all these
fields are in the reactive near-field region of the radiator. It is
hard for the interpolation method to predict such a complex field
decreasing ratio.

Next, the errors where the ANN and the interpolation methods
are used to predict the near-field magnitude when δ = 80% are
listed in Table II. For this smaller upper scanning plane, the error
of the interpolation method increases greatly, while the error
of the ANN method is still smaller. Fig. 6 shows the predicted
magnitude distribution of the magnetic field at a validation plane
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√
√
√
√
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TABLE II
ERRORS OF PREDICTED FIELD BY USING TWO METHODS WHEN δ = 80%

Fig. 6. Predicted magnitude distribution of the magnetic field at a height of z
= 73 mm when δ = 80%.

of z= 73 mm. It can be clearly seen that the interpolation method
exhibits a large error in the top-left region of the validation plane,
which is just below the “missing region” (nonscanning region)
of the upper scanning plane. However, the ANN can accurately
predict the field magnitude.

From Tables I and II, and Figs. 5 and 6, we can see that the
interpolation method shows a large error when the observation
point of the predicted field is far away from the scanning points
(above/below the scanning planes, or near the “missing regions”
of the scanning planes). On the other hand, since the input of
the ANN is Green’s function, which contains the source and
observation positions, it can predict the complex field decreas-
ing ratio from lower to upper planes, especially when there
are constructive and deconstructive interference effects in the
reactive near-field region. So the ANN method can predict more
accurately than the interpolation method.

The error of the predicted magnetic field magnitude on the
validation plane of z = 73 mm is compared between the ANN
and interpolation methods for different values of δ, as shown
in Fig. 7. From these curves, it can be found that the change of
ANN error with the size of the upper scanning plane is smoother
than that of the interpolation method error. This validates the
robustness of the ANN method.

B. Two Infinite Metal Planes

In the second example, two finite metal planes in the first
example are replaced by two infinite planes so that there are
no edge diffractions, and the frequency is 5 GHz. The distance
between the two metal planes is increased to 500 mm. The source
dipole is aligned with the center of two metal planes at z =
50 mm.

Fig. 7. Errors for the field magnitude on the validation plane of z = 73 mm
for ANN and interpolation methods.

TABLE III
ERRORS OF PREDICTED FIELD WHEN δ = 80%

Two scanning planes are used. One is at the height of z =
165 mm and is called the upper scanning plane, another at the
height of z = 150 mm is called the lower scanning plane. The
size of the lower scanning plane is still 400 mm × 400 mm. The
upper left corners of both scanning planes are aligned. Again
the ratio between the side lengths of the upper scanning plane
and the lower scanning plane is defined as δ.

The source locationr′
j is an important parameter for the ANN.

It will change Green’s functions inputted to the ANN. In this
example, the effect of r′j on the predicted field is analyzed. r′j is
defined on an 8 × 8 mm plane. Three cases are studied: r′j on z
= 51 mm with 5 × 5 points (case 1), r′j on z = 60 mm with 5 ×
5 points (case 2), and r′j on z = 60 mm with 3 × 3 points (case
3). When r′j is near the radiation source, the resulting radiation
field more closely matches the real radiation field. We generally
choose points r′j not larger than 1/6th wavelength away from
the real radiation source.

For δ = 80%, the prediction errors are illustrated in Table III.
When the number and location of r′j changed, ANN can still
create a correct mapping relationship between the observation
point and the predicted field, which shows the robustness of
the ANN method. However, the interpolation method cannot
accurately predict the field outside the scanning regions.

Authorized licensed use limited to: University of Exeter. Downloaded on July 15,2020 at 14:06:18 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

Fig. 8. Errors for the field magnitude on the validation plane of z = 157 mm
for ANN and interpolation methods.

Fig. 9. Magnetic dipole between two infinite metal planes. The area A (z =
0 to 40 mm), B (z = 40 to 60 mm), C (z = 60 to 157 mm), and D (z = 157 to
500 mm) are filled with a material with the relative permittivity of 3, 4, 5, and
6, respectively. The dielectric loss tangents of all areas are 0.1.

We plot the error curves for the predicted field magnitude on
the validation plane of z = 157 mm for ANN and interpolation
methods in Fig. 8. Again, the change in the ANN error curve
is very flat and is not affected by the incomplete scanning
plane. However, the interpolation error is increasing with the
reduced δ.

C. Multilayered and Lossy Materials

In this section, the uniform space between two infinite metal
planes is replaced by lossy four-layered materials. The dimen-
sions and material parameters of every layer are shown in Fig. 9.
The real source is a magnetic dipole in region B. The source
locations r′j is a 3 × 3 array defined on a 6 mm × 6 mm plane
with the center position (0 mm, 0 mm, 50 mm), which is on the
same plane of the real dipole source. The scanning planes are
on z = 150 and 165 mm, which are in C and D regions in Fig. 9,
respectively.

TABLE IV
ERRORS OF PREDICTED FIELD WHEN δ = 80%, (A) MAGNETIC FIELD AND (B)

ELECTRIC FIELD

Fig. 10. Magnitude distribution of (a) magnetic field and (b) electric field on
z = 157 mm when δ = 80% and dielectric loss tangents is 0.1.

For δ = 80%, the prediction errors are illustrated in Ta-
ble IV(a) for different validation planes in regions C and D.
In Fig. 10(a), we plot ANN predicted magnetic field pattern on z
= 157 mm (which is the interface between regions C and D) and
compare it with the reference value. Table IV(a) and Fig. 10(a)
show that the proposed ANN method is still accurate for the
multilayered and lossy materials.

D. Equivalent Electric Dipoles + ANN for Electric Field
Prediction

In previous examples, the equivalent magnetic dipoles +
ANN are used to predict the magnetic near-field from a real
source. In this section, the equivalent electric dipoles + ANN
are used to predict the electric near-field from the real source,
in order to further verify the generality of the proposed ANN
method. The example is the same as that in Section IIIB, except
that we filled the material with a loss tangent of 0.1. We also
added one more magnetic dipole along the z-direction as the
real radiation source.

Green’s functions of electric dipoles are used as the input
of the ANN. For δ = 80%, the prediction errors are shown in
Table IV(b). In Fig. 10(b), we plot the ANN predicted electric
field pattern on z = 157 mm and compare it with the reference.
They show the ANN method can be used for both electric and
magnetic fields’ predictions.

IV. MEASUREMENT EXAMPLE

In this section, the ANN method is further validated by the
measurement result. Usually, the EMI source is an unintended
antenna, so a self-made patch antenna is used as the EMI source.
Fig. 11 shows the measured return loss of the patch antenna. Two
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Fig. 11. Measured return loss of the patch antenna.

Fig. 12. (a) Patch antenna and the magnetic probe and (b) near-field scanning
system.

frequencies 2.353 GHz and 3.724 GHz are used as the working
frequencies.

As shown in Fig. 12, the patch antenna is placed between
two aluminum plates. A near-field scanning system is used to
measure the magnetic field of the patch antenna. As shown in
Fig. 12(a), the right and left metal planes are at x = 0 mm and
x = 370 mm, respectively. The center of the patch antenna is
located at (100 mm, 0 mm, 0 mm). The source locations r′j are
a 5 × 5 array with the center position (110 mm, 0 mm, 0 mm).

Two scanning planes are used for the ANN training. One
is 140 mm away from the right metal plate, which is named
the scanning plane #1. Another scanning plane 150 mm away
from the right metal plate is named the scanning plane #2. The
scanning plane #1 is fixed as 100 × 100 mm. This time we keep
the center of two scanning planes aligned and reduce the size

TABLE V
ERRORS OF PREDICTED FIELD BY USING THREE METHODS WHEN δ= 80%

Fig. 13. Magnitude distribution of the magnetic field 145 mm away from the
right metal plate when δ = 80%.

of the scanning plane #2. The ratio between the side lengths of
the two scanning planes is defined as δ. Different from previous
numerical examples, here, two magnetic field components are
scanned, which are tangential and vertical to the scanning planes,
respectively.

In this example, the ANN training is completed within 5 min.
Table V presents the errors of the three methods when δ = 80%.
We also apply a global optimization algorithm, the DE method,
for comparison. When we reduce the size of the scanning plane
#2, the error of the interpolation method is already large than
10%, and the DE method has a larger error than the ANN method.
The DE method had been used for source reconstruction in a
free-space environment [5].

As can be seen from Fig. 13, the interpolation method has
a large error in predicting the fields on the four corners of the
validation plane 145 mm away from the right metal plate. The
large error regions are related to the “missing regions” of the
scanning plane #2. However, the ANN can accurately handle
the “missing regions.” The DE method gives a blur field pattern
than the ANN method does.

Fig. 14 shows the error curves of the magnetic field magnitude
on the validation plane 145 mm away from the right metal plate
with different δ by using the ANN, DE, and the interpolation
methods, respectively. We also verify the calculation error when
the operating frequency is 3.724 GHz in Fig. 15. It can be seen
that the error of the ANN method is not sensitive to the size of
the scanning planes.
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Fig. 14. Error for the field magnitude on the validation plane 145 mm away
from the right metal plate at 2.353 GHz.

Fig. 15. Errors for the field magnitude on the validation plane 145 mm away
from the right metal plate at 3.724 GHz.

V. CONCLUSION

In this article, we introduce the ANN method to predict
near-field radiated from an unknown source in a complex envi-
ronment with multiple reflections. Most EMI problems include
multiple reflections and diffractions of electromagnetic waves in
a complex environment, for example, multiple reflections in the
shielding box. Such a radiation problem can be explained more
clearly from the perspective of Green’s function, which is used as
the input of the ANN. Using the powerful mapping capabilities
of ANN, we build the mapping between the observation point
and the magnitude of the magnetic near-field. Compared with the
traditional interpolation method and the DE method, the ANN
method has better accuracy and robustness.
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